
Schnorr and Taproot in
Lightning

2018-09-01 Jonas Nick jonasd.nick@gmail.com https://nickler.ninja @n1ckler

Objective: Increase Robustness
● Privacy
● Scalability
● Consensus

Scriptless Scripts approach: different payment types (multisig, lightning channels,
etc) should look like normal payments.

1. Participants communicate directly
2. That results in a simple transaction (“Alice pays Bob”)

Introduction: bitcoins

2
Alice &
hash lock
OR Bob
after 144
blocks

1
Alice

1
Alice
& Bob

Alices signature,
Bob’s signature

Alice’s signature
Alices signature,
Hash preimage

Bitcoin Scripts

Script Witness

<pubkey>
OP_CHECKSIGVERIFY

<signature>

2 <pubkey1> <pubkey2> 2
OP_CHECKMULTISIGVERIFY

<signature1>
<signature2>

Schnorr Signatures
● Currently: Elliptic Curve Digital Signature Algorithm (ECDSA)
● Schnorr signatures is a different signature scheme that could be used instead
● BIP recently was proposed to standardize them for Bitcoin
● No new crypto assumptions, stronger security proof
● Efficiently batch verifiable: multiple signature verifications at once are faster

than individually

Schnorr Signatures

Script Witness Meaning

<pubkey>
OP_SCHNORR

<signature> ● Normal payment?
● k-of-n multisig?
● Lightning cooperative

close?
● Hash lock?

Size: 32 bytes public key + 64 bytes signature

Add new consensus rule to add Schnorr signature validation to Script

Schnorr Signatures: 2-of-2 MuSig

Alice: Bob:

nonce commitment ->
 <- nonce commitment
 nonce ->
 <- nonce
 partial sig ->
 <- partial sig
 combine combine

1. Create combined public key P from Alice’s key A and Bob’s key B
P = hash(A,B,0)*A + hash(A,B,1)*B

2. Interactively sign transaction

Payment Forwarding with Hash Locks

Bob

Charlie

Alice

hash(payment_preimage)

hash(payment_preimage)

Hash Locks

Script Witness Meaning

...
<payment_hash>
...
<pubkey>
OP_CHECKSIG

<payment_preimage>
<signature>

Forces spender to reveal the
payment preimage which
can be used to atomically
swap payments.

Locks with Schnorr & Adaptor Signatures

Bob

Hash locks Discrete Log based locks

hash(payment_preimage) payment_preimage*G

“On-chain”: payment_preimage explicit in
tx

“Off-chain”: Payment_preimage computable
from normal tx signature & adaptor signature

Routing privacy

Allows proof of payment and buying discrete
logarithms

CharlieAlice
random*TT

Locks with Schnorr & Adaptor Signatures

Script Witness Meaning

<pubkey>
OP_SCHNORR

<signature> ● Normal payment?
● k-of-n multisig?
● Lightning cooperative

close?
● Hash lock?

Size: 32 bytes public key + 64 bytes signature

Locks with Schnorr & Adaptor Signatures

1
Alice
& Bob

● Bob knows some secret, Alice wants to know it
● They have a 2-of-2 MuSig output
● Alice signs a transaction only when it in turn

learns the secret

Main idea: Bob sends Alice adaptor signature before Alice sends partial
signature.

secret = adaptor_sig + Alice_partial_sig - combined_sig

Locks with Schnorr & Adaptor Signatures
● Bob knows some secret, Alice wants to know it
● They have a 2-of-2 MuSig output

1
Alice
& Bob

Alice: Bob:
… exchange nonces …

 <- adaptor sig
 verify adaptor sig
 partial sig ->
 partial sign
 combine

Bob spends coin, Alice computes lock secret as
secret = adaptor_sig + Alice_partial_sig - combined_sig

Example: eltoo updates

Script Meaning

OP_IF
 2 <A> 2 OP_CHECKMULTISIG
OP_ELSE
 ... OP_CLTV ...
 2 <Au> <Bu> 2 OP_CHECKMULTISIG
OP_ENDIF

Can be spent either by
2-of-2 of pubkeys A and B or
by attaching another update
transaction

Merkleized Abstract Syntax Trees (MAST)

root
= hash(left branch, right branch)

2 <A> 2
OP_CHECKMULTISIG … OP_CLTV … 2

<Au> <Bu> 2
OP_CHECKMULTISIG

Merkleized Abstract Syntax Trees (MAST)

● MAST usage is revealed to blockchain observers
● data overhead because there’s no default branch

Script Witness

root OP_MAST(?) <script>
<merkle proof>
<witness>

Pay-To-Contract (P2C)
● Idea: put commitment to data into a public key
● Original use case: allow sender to prove in private what purpose of payment

was
○ F.e. address commits to data “this public key is used to buy a hat”

1. Generate normal public key P = x*G
2. Create new public key Q from P and C as Q = P + hash(P,C)*G
3. Commit to C by putting Q in the blockchain
4. Now can

a. Sign for Q because know private key x + hash(P,C)
b. Reveal P and C to prove that Q commits to C

Taproot & Schnorr

<public_key> OP_SCHNORR

… OP_CLTV … <update_public_key>
OP_SCHNORR

(Commitment with P2C)

Taproot Assumption:
Interesting scripts have
almost always a logical top
level branch that allows
satisfaction of the contract
with nothing other than a
signature by all parties

Taproot & Schnorr

Taproot: Add a new consensus rule that additionally allows
spending a coin by proving that the input public key committed to a
script and providing the witness for that script.

Taproot & Schnorr

Script Witness Meaning

<pubkey>
OP_SCHNORR

<signature> ● … (as before) …

<… OP_CLTV …
<update_public_key>
OP_SCHNORR>
<P>
<signature>

● Uncooperative close

Conclusion
● Adding Schnorr Signatures to Bitcoin allows cheaper and more private

Lightning channels
○ With adaptor signatures cheaper and more private uncooperative closings, routing privacy,

proof of payment

● Adding Taproot to Bitcoin allows cheaper and more private uncooperative
channel closings

● Status
○ Schnorr standardization BIP in review stage
○ Schnorr softfork BIP work-in-progress
○ Schnorr/taproot code WIP

References
● Schnorr BIP

https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
● MuSig https://eprint.iacr.org/2018/068.pdf
● Adaptor Sigs https://eprint.iacr.org/2018/472.pdf
● Blind Signatures in Scriptless Scripts https://nickler.ninja/slides/2018-bob.pdf
● Eltoo https://blockstream.com/eltoo.pdf
● Taproot

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.ht
ml

https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://eprint.iacr.org/2018/068.pdf
https://eprint.iacr.org/2018/472.pdf
https://nickler.ninja/slides/2018-bob.pdf
https://blockstream.com/eltoo.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html

Q&A
● slides: https://nickler.ninja/slides/2018-hackday.pdf
● questions?

https://nickler.ninja/slides/2018-hackday.pdf

