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Abstract

This thesis evaluates psycholinguistic theories about the cognitive processing of
words. Consequently, the time-course of compound reading is analyzed using
generalized additive models in a dataset of eye movements. The theories to be
contrasted are sublexical (Taft and Forster, 1975), supralexical (Giraudo and
Grainger, 2001) vs. dual route processing (Schreuder and Baayen, 1995) and
form-then-meaning (e.g. Rastle and Davis, 2008) vs. form-and-meaning (e.g.
Feldman et al., 2009) processing.

As the goal is to find the best model given various predictors, some gen-
eral mechanisms of eye movements will be demonstrated, e.g. the position
in the line has substantial effects, single fixations last longer, are on shorter
words, more in the center of the word and influenced differently by frequency
measures.

Inspired by Kuperman et al. (2009) it is shown that already the early eye
fixations on words are guided by first constituent and compound frequency,
providing evidence for parallel dual route models.

Similar to Baayen et al. (2013), Latent Semantic Analysis (LSA) similarity
scores (Landauer and Dumais, 1997) permit investigating the time point of
semantic processing. The effect of LSA similarity not only shows up in the
earliest word fixations, but the data reveals that semantics plays a role even
before a word is fixated. In particular, the fixation position in the word is
more to the right, when the semantic transparency, i.e. the similarity between
compound and second constituent is high. This evidence of parafoveal seman-
tic processing challenges opposing findings obtained with the eye-contingent
boundary paradigm (Rayner et al., 1986). In the framework of naive discrim-
inative learning (Baayen et al., 2011), the effect of transparency on fixation
position reflects optimization of the landing position for accessing the ortho-
graphic information that is most discriminative for the compound.

Keywords: reading, eye-movements, compounds, semantic similarity, morpho-
logical processing, generalized additive model
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1 Introduction

One of the defining properties of language is the possibility to produce and
comprehend an unlimited number of different sentences. Since human existence
is uncontroversially finite, language makes use of a finite set of primitives
manipulated with a finite set of rules. This was arguably first stated by German
scientist Alexander von Humboldt who claimed that language makes infinite
use of finite means (von Humboldt, 1836, p. 106). An analogy can be made to
the set of natural numbers: there is a fixed set of single digits, which can be
combined to numbers of unbound length. The unboundedness of language also
implies that its possible to come up with a unique sentence. It is rather easy
to concatenate words to a valid meaningful sentence until you can be relatively
sure that the sentence has never been uttered before.

This design pattern of language poses interesting questions about the ex-
act cognitive basis of language, for which researchers have developed many
rivaling models in the past decades. Specifically, those questions range among
others from the origin, acquisition, processing, to the production of language.
Coming up with answers is inevitable for developing powerful machines, that
are capable of imitating the presently unique human ability of processing nat-
ural language. Advances find their application in human-machine interaction,
information extraction, translation and many others.

Interestingly, these astounding properties of language are not only re-
stricted to the framework of sentences, but also apply to other layers of lin-
guistic analysis, such as the formation of words - the main concern of this
thesis. The creation of very long words is possible in many languages. For
instance, the word White house travel office staff is valid, meaningful and can
be extended further, restricted only by your imagination. Some languages have
especially long words, such as German where politicians are known for creat-
ing word monsters like Rindfleischetikettierungsüberwachungsaufgabenübertra-
gungsgesetz - literally cattle marking and beef labeling supervision duties del-
egation law. The study of the structure of words provides a window to the
inner workings of language processing and mechanisms of the mind.

This thesis will evaluate some of the proposed models of cognitive mecha-
nisms underlying the processing of words with the help of experimental data
gathered in an eye tracking experiment, in which the course of reading English
sentences was monitored. Therefore, the first chapter recapitulates textbook
explanations about the linguistic analysis of words, followed by a chapter con-
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cerned about the general observations in the process of reading. If not ex-
plicitly referenced otherwise, the information in chapter 1 is taken from Booij
(2005) and in chapter 2 from the review article on eye movements in reading by
Rayner (1998). Afterwards, the statistical methods used in the analysis of the
data are introduced. The next chapter deals with the detailed experimental
setup and data processing, leading to the analysis of the experimental data
and finally to a general discussion of the results.



7

2 Morphology

2.1 Terminology

Morphology is the study of word grammar, it deals with the structure of words
and its relation to meaning. It is to be distinguished from the linguistic sub-
fields that deal with the intrinsic meaning of words (semantics), the construc-
tion of sentences (syntax) and contribution of context to meaning when mul-
tiple individuals interact (pragmatics).

The first step of scientific analysis is the categorization of phenomena we
observe, hence we should agree on a set of new terms to describe words. This
begins with the question of whether two words such as work and works are
actually the same word. On the one hand, both words feel to be instances of
the same word. On the other hand, both words differ in their concrete forms.
We say that work and works can be conceived as different word forms of the
same lexeme work.

Dictionary makers assume that you have an understanding of language, so
they don’t list regular word forms such as works, because a speaker of English
should be able to do that by himself. Instead, they only list the lemma work,
which is the concrete form for the abstract notion of the lexeme work.

The building blocks of words are called morphemes. In other words,
they are the minimal linguistic units with lexical or grammatical meaning.
For instance, work, -s and -er are all morphemes. Simplex words like work
are composed of only one morpheme, whereas complex words like works are
composed of multiple morphemes.

The two important processes in morphology are inflection and word for-
mation. The difference is that in inflection the lexeme stays the same while
word formation leads to a new lexeme. We have already seen an example for
inflection when we appended -s to the lexeme work to gain the third person
form. Word Formation, on the contrary, is adding -er to the lexeme to receive
the noun worker, which has a different meaning.

Word formation itself comprises two processes called derivation and com-
pounding. The difference between the two is that in compounding the build-
ing blocks or constituents of a word are themselves lexemes. For instance
-er is not lexeme, which is why worker is an example for a derived word. In
contrast, workbench is a compound because both constituents work and bench
are lexemes (Figure 2.1).
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Figure 2.1: The tree depicts the morphological structure of the noun (N)
word form workbenches. Concatenating the lemmas work and bench yields the
compound lemma workbench. Further, the lemma is inflected using the suffix
(S) -es.

Since work, works, worker and workbench all have a lexeme in common, we
call this set the word family of work.

It would be an impossible task to cover all possible compounds in a dic-
tionary. Rather, it has to be assumed that a speaker of the language is aware
of systematicities and thereby able to understand a compound, if it has a
transparent meaning. My dictionary lists bottleneck, but not bottle factory,
and indeed everyone would understand bottle factory as a factory for bottles.
Intuitively, we are able to apply the compositionality principle (attributed
to Gottlob Frege in Frege (1892)), which states that

(1) ’The meaning of a complex expression is a compositional function of the
meaning of its constituents, and the way they are combined.’

On the contrary, bottleneck additionally has unpredictable conventionalized
meanings.

To exemplify underlying systematicities compare the compounds soup meat
and meat soup. Both have a transparent meaning, one is meat used in soup, the
other is soup consisting of meat. We observe here that a compound AB (where
A and B are the constituents respectively) denotes a B that has something to
do with A. Thus, the constituent A is called head and B is called modifier.
The set of compounds with a single head which contributes most of the meaning
are called endocentric.

However, the functional relationship between head and modifier can be
quite opaque. A wind mill is a mill powered by wind, whereas a flour mill is
a mill that grinds flour. The exact meaning is only accessible in analogy, with
contextual information or world knowledge.

In addition to providing the primary semantic information (meaning) the
head determines the syntactic category of the compound - i.e. ice-cold (Noun-
Adjective) is an adjective and overrate (PrepositionVerb) is a verb. The head
can fulfill additional roles such as determining the gender of the compound in
German. For example, the constituents Fußball (football, male) and Stadion
(stadium, neuter) result in the compound Fußballstadion (football stadium,
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neuter).
One may have noticed in previous examples that the head was always at

the same position within word. This observation tempted Williams (1981)
to propose a rule for the identification of head constituents, known as the
Right-hand Head Rule:

(2) ’In morphology, we define the head of a morphologically complex word
to be the right-hand member of that word.’

In general, most compounds in Germanic languages (English, German, Dutch,
...) obey the rule, but there are a lot of exceptions.

So called exocentric compounds completely lack a head so that their
meaning can not be easily guessed from their constituent parts. For exam-
ple, a pickpocket is not a kind of pocket but a person who occasionally picks
pockets. Similarly, the German word Rotschopf (lit. red-mop) doesn’t denote
colorful hair but the person this hair belongs to. Another category of com-
pounds are copulative compounds which lack a single semantic head and
whose meaning arises from the relation between constituents that reside on the
same hierarchical level. Examples comprise washer-dryer, singer-songwriter or
bittersweet.

Until now we have relied on our intuitive understanding of words, but in
some cases it can be difficult to distinguish words and phrases. Some languages
do not have a written tradition, others do not use the convention that spaces
indicate word boundaries. Seprating spaces are merely a matter of orthogra-
phy - how something is actually written - and do not isolate words. And the
difference between phrases and words does matter: if you interpret criminal
lawyer as a noun phrase with an adjective instead of a compound, it denotes
a lawyer, who breaks the law, instead of someone who specializes in criminal
law.

To be classified as a word, first, it should fulfill a labelling function,
thereby precisely refering to one specific concept. Second, the criterion of
lexical integrity (Anderson, 1992) must apply, which says that

(3) ’The syntax neither manipulates nor has access to the internal form of
words’.

Therefore, the constituents should always appear in the same order in the
compound and it shouldn’t be possible to seperate them in a sentence. Further,
rules of inflection should not apply to individual constituents. The French
pomme de terre (lit. apple from the earth - potato) clearly has a labelling
function, but under the principle of lexical integrity it can not count as a
compound, because its plural is pommes de terre, whereas the regular plural
form of a French word is expressed by appending a suffix at its right edge.
A third criterion of word demarcation are language-typical emphasis given to
certain syllables in a word. A dárk room is a specific place for processing
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photographic material, opposed to the general notion of a dark róom. Fourth,
we need context in order to tell compounds apart from noun phrases with
attributive adjectives - it is possible to denote lawyers who break the law as
criminal lawyers.

In this section we tried to define what a word is and how words can be
categorized, independently of the language that serves as an example. How-
ever, some rules are tendential and only apply to certain languages like the
Righthand Head Rule, while others seem to be universal in language like the
principle of compositionality. Furthermore, we have seen the complex relation-
ship between a word, its structure and the thing it refers to, leading us to the
question for the cognitive basis of these phenomena.

2.2 Morphology and Mind

When it comes to language, the mind is usually thought of as having devices
for storing the units of the language and for combining them with the help of
rules. On the morphological layer the former is the inventory of words of a
language, the mental lexicon.

It has several differences compared to a dictionary. First, a mental lex-
icon is continuously developing, with new words being coined. Further, the
mental lexicon also stores the number of occurrence of the word in language,
the word frequency. This is concluded from the fact that high frequency
words are more easily recognized than low frequency words. It can be shown
in a lexical decision experiment, a common experiment setup in psycholin-
guistics. A word is presented to the participant and he has to decide whether
the word is in the language, while the response latency between the presen-
tation of the stimulus and the push of the button is measured. A typical
decision about whether a bi- or triconstituent compound is a known word in
the language takes about 763 msec for existing words and 801 msec for nonce
compounds (Kuperman et al., 2009). Presenting high frequency words yields
substantially faster responses than low frequency words, which is referred to
as the frequency effect.

In order to measure the frequency of a word, scientists collect large and
structured sets of text (corpora, sg. corpus) and count occurence of the word.
The Web1T (Brants and Franz, 2006) corpus for example collected texts from
a trillion web pages and used it to compile frequency lists. In addition to
frequencies other databases manually attach information to the corpus. The
CELEX database (Baayen et al., 1993) for example contains the morphological
structure of the words in the collection. It was critized for frequency measures
because it is based only on 16 million words. Instead Brysbaert and New (2009)
propose using subtitles of movies, from which they composed a 51 million word
corpus.
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Another important difference between a dictionary and a mental lexicon
is that the only relationship between words in a dictionary is alphabetical
listing. On the contrary, words with similar meaning are related in the mental
lexicon, which can also be shown in lexical decision experiments. In those
setups, first a prime word is presented for a short duration of time, followed
by a mask, and then the target word, which has to be classified as being in the
language or not. If the prime and target word are for example semantically
related - such as bread and butter, as opposed to bread and doctor - there
will be significantly faster response latencies. This shows that words receive
activation when accessed in the lexicon, which spreads to related words and
enhances their access time.

From the previous section it should be clear that not every complex word
needs an entry in the mental lexicon, because of underlying systematicities.
In psycholinguistics it is generally a concern what aspects of language are
retrieved via storage versus computation. The fact that we can understand and
coin new compounds shows that their meaning has to be computed. It is not
necessary to store a compound like bottle factory, because we can decompose its
structure and look up the meaning of individual parts, whereas lexemes with
conventionalized and opaque meanings would need to be stored. But there
is proof that some high frequency word forms are stored in the lexicon, even
if they appear completely regularly. It was shown that the word form shows
frequency effects while the lexeme frequency remains constant (Baayen et al.,
1997). Thus, recognizing a morphologically complex word can principally take
place the following ways:

• sublexical: Decomposition into morphemes before whole-word repore-
sentation is accessed in the lexicon (Taft and Forster, 1975).

• supralexical: Morphemes are accessed only after whole word has been
accessed in the lexicon (Giraudo and Grainger, 2001).

• dual route: Decomposition and whole-word access occur in parallel
(Schreuder and Baayen, 1995).

• connectionist approach: Morphological effects arise as epiphenom-
ena in mappings between spelling, sound and meaning (Seidenberg and
McClelland, 1989; Seidenberg and Gonnerman, 2000).

We are not going to discuss connectionist models further because the other
approaches are far more popular in morphological processing. Sublexical and
supralexical refer to the point in time when morphological processing takes
place - either before (sub-) or after (supra-) lexical access. Evidence of sublexi-
cal models was for example given by Forster and Taft (1976) who compared lex-
ical decision latencies of compound nonwords whose first constituent is a word
(e.g. dustworth, footmilge) with compound nonwords whose first constituent
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is not a word (e.g. trowbreak, mowdflisk). The former took significantly longer
to reject, suggesting that the compound nonwords are decomposed, because
otherwise both conditions should evoke the same latencies.

Supralexical processing was shown for example by Giraudo and Grainger
(2001) who conducted a priming experiment. They stated that according to the
sublexical hypothesis the lexical decision latency should take longer for target
words (e.g. taxation) to identify if the prime word is a derived word (taxability)
than the root (tax ) because the former prime requires extra parsing. Their
results indicate that this is not the case and so they argue for a supralexical
account.

The Experiments conducted for this thesis will provide evidence that strict
supralexical or sublexical models are questionable and of the previously sug-
gested models we should favor a dual route model.

The second topic of this thesis is whether morphological processes take se-
mantics into account. The form-then-meaning (e.g. Rastle and Davis, 2008)
view states that complex words undergo a two-step process: initially an early
meaning-blind decomposition followed by semantic interpretation. One source
of evidence is that in priming studies Rastle et al. (2004) found no difference
between conditions where the prime and target word were morphologically re-
lated (e.g. trucker - truck) and conditions where prime and target only seem
to be morphologically related (e.g. corner - corn). A second source of evi-
dence for form-then-meaning processing comes from neuroimaging data that
was gathered in primed or unprimed lexical decision tasks. Lavric et al. (2007)
for instance found that semantically transparent primes (truck - trucker) show
a similar ERP signal to semantically opaque primes (corn - corner) at 340 to
500 msec after stimulus onset, which is what they count as evidence that
morphological decomposition is independent of semantics. In addition, they
revealed that the signal between 220 and 260 msec differed significantly be-
tween transparent/opaque and only orthographically related primes. Taken
together with other brain imaging studies, semantic interpretations seem to
occur between 300-500 msec after stimulus presentation and the signature of
morphological processing is found substantially earlier.

However, several studies with a different experiment setup, namely with eye
tracking, are incompatible with the late locus of semantic effects. For isolated
words and words in context lexical and semantic factors affect the earliest
eye-movements in the first 200-250 msec after stimulus presentation. Lexical
frequency of the compound as well as the family size of the left constituent
affect the duration of compound processing (Kuperman et al., 2009). Also,
Marelli and Luzzatti (2012) showed that semantic transparency has a reliable
influence on early eye-movements.

The experiments conducted for this thesis make likewise use of eye tracking
to analyze the time-course of compound processing in order to shed light on the
timing of semantic effects. In line with Baayen et al. (2013) it will be argued
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Table 2.1: LSA similarities from http://lsa.colorado.edu/ using the Gen-
eral Reading up to 1st year college (300 factors) space and term to term com-
parison.

Text Text Similarity
garbage trash 0.86
corner corn 0.1
dark darkness 0.78
honeymoon moon 0.01
half-moon moon 0.96
network work 0.08
baseball ball 0.69

for the form-and-meaning hypotheses and will go further by showing that
semantic effects occur even before the whole compound has been scanned.
Before we proceed with familiarizing ourselves with the general mechanisms of
eye-movements in the next chapter, it will be clarified in the next section how
we operationalize the semantic effects that we try to find.

2.3 Semantic Similarity between Compounds

A common way to measure semantic similarity between words is by using
Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997), a compu-
tational technique that estimates similarity based on the contexts in which the
words appear by using large corpora. To calculate the similarity with LSA,
first, the texts are represented as a matrix where every row stands for a unique
word and every column for the place it occurs. Latent Semantic Analysis as-
sumes that terms close in meaning will occur in similar pieces in text. Second,
singular value decomposition is applied to the matrix, which boils the matrix
down to the relevant columns. Then, the similarity of two words is computed
by measuring the cosine of the angle between two vectors formed by the rows
of the words. The similarity scores range from -1 to 1, a higher score stands
for a shorter distance between the vectors and represents a higher similarity
between the words.

To convince yourself of the authors’ claim and many others that the sim-
ilarity score approximates human judgements, you can study exemplary sim-
ilarities in table 2.1. The difference in similarity between honeymoon/moon
and half-moon/moon is of particular interest. It shows that we can treat the
scores between the whole compound and the right constituent, which most
often serves as the head, as an estimation of semantic opacity. Baayen et al.
(2013) compared the similarity ratings between constituent and compound
computed by LSA with scores they obtained from human raters. They showed

http://lsa.colorado.edu/
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that the Pearson’s correlation yields r = 0.51 for left-whole LSA similarity and
r = 0.44 for right-whole LSA similarity. Further, they showed that left-whole
and right-whole LSA similarity is more predictive for lexical decision latencies
than human judgements.
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3 Reading

Reading feels like a continuous flow along the sentence. Actually, when mea-
suring the place where the eyes are looking to with an eye tracker, it becomes
evident that reading involves periods of rest and sudden movement. An eye
tracker typically measures eye movements with a video camera, spots the pupil
center and computes the point where the participant is looking. The device
reveals that the eye moves rapidly between fixation positions where the eye
remains still for around 200 ms (Figure 3.1) Because the eyes’ sensitivity to
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Figure 3.1: Density of fixation du-
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positions by single fixations.

light is maximal in the fovea and decreases in parafoveal and peripheral re-
gions, the acuity (clearness of vision) is only optimal around fixation positions.
Interestingly, we find a frequency effect in reading, high frequency words take
up less time . This shows that properties of the word influence fixation time,
such that fixations can tell us about cognitive processing. The eye movements
are referred to as saccades, they are on average 7-9 letters long, range from
1 to over 15 letters, and last typically 30 ms. During saccades no visual in-
formation is taken up, a phenomenon called saccadic suppression. Figure 3.3
depicts a sequence of fixation positions in a sentence. 15% of content words
and 65% of function words are not fixated once during reading, indicating that
parafoveal vision and expectations about the sentence structure are sufficient
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Figure 3.3: Section of the Brown corpus with fixation positions of a participant.

to identify the word. Some words only receive a single fixation, while others
are fixated multiple times. We define first fixations as both single fixations
and the first-of-many fixations in a word, as opposed to refixations which
happen mostly with words we find complicated. In figure 3.2 we can see the
distribution of first fixation positions and that the first fixation position in a
word differs between single and non single fixations. Moreover, we can see that
most first fixations are in the first half of the word. In addition to a continuous
reading flow from left to right, about 10-15% of saccades are regressions, eye
movements which go back in text. Short regressions suggest that the reader has
problems processing the word, while longer regressions imply that the reader
did not understand the text.

Cognitive processes accompanying reading and operationalized by fixation
time involve many subprocesses including saccade programming, word pro-
cessing and integration into the sentence. It takes at least 150-170 ms to plan
a saccade, which suggests that saccade programming is done in parallel with
comprehension processes. The classic model of eye movement control was pro-
posed by Morrison (1984). It states that the word in the fixation, let’s call it
n, is currently processed. After completion of word processing, attention shifts
to word n + 1 and initiates to prepare a motor program that brings n + 1 in
foveal view. Meanwhile n + 1 is processed parafoveally until finally a saccade
to n+ 1 is executed. If n+ 1 is already identified before it is fixated, attention
shifts to the word n+ 2 such that n+ 1 will be skipped. From this perspective
fixation times reflect lexical access, whereas regressions occur because postac-
cess processes like semantic and syntactic integration intervene. A word has to
be fixated again if the acuity is not high enough to identify the letters at the
end of the word, which explains the higher probability of refixations on longer
words.

To investigate the amount of parafoveal information uptake researchers
have been using the eye-contingent boundary paradigm, in which participants
where presented with a sentence, where the target word is replaced when a fix-
ation lands on the word. Thus, the gaze duration on the target word provides
insight into how much the word has already been processed. Rayner et al.
(1986) conducted a study, where the target word is orthographically related
(sorp), semantically related (tune) or unrelated (door) before it is fixated and
replaced by the correct word (song). It was shown that the orthographic condi-
tion causes similar gaze durations on the target word as the control condition,
whereas the semantic condition resembles the unrelated condition. Therefore,
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the view on parafoveal information uptake has been that only first letters and
the length of n + 1 are received (Bertram, 2011). However, recent research
has shown that word processing is not constrained to n, but upcoming words
n + 1 and n + 2 are processed parallel even though they are only projected
to parafoveal regions in the eye (Kliegl et al., 2007). More importantly, Ho-
henstein et al. (2010) demonstrated that semantically related parafoveal words
can give a preview benefit on the current fixation which challenges previous
models.

All in all, the first fixation duration is able to tell us something about lexical
processing, and thus about morphological processing, if the fixation lands on
a morphologically complex word. Moreover, by examining the first fixation
position we can reveal properties of parafoveal processing, because planning of
a saccade can not be informed by previous foveal processing. In contrast to
many of the experiments with a factorial design that were introduced, here we
will conduct a regression study which will be explained in the next chapter in
more detail.
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4 Statistics

In order to infer the relevant features of words from the eye tracking data, we
will use statistical modelling, namely regression analysis. The goal of regression
analysis is trying to estimate the relationship between predictor variables and a
response variable. The standard model, simple linear regression, assumes that
the response variable y can be represented as a weighted sum of predictors xi:

y = β0 + β1x1 + ...+ βnxn

The variables β are called parameters of the model and β0 is the intercept.
The parameters are normally estimated by minimizing the squared error be-
tween the model predictions and the actual values.

The advantage of a regression design in contrast to a factorial experimental
design is that the predictor variables do not have to be artificially dichotomized.
Rather, numerical variables appear in their full spectrum in the model, which
leads to increased statistical power (Cohen, 1983; Baayen, 2010).

Generalized additive models (GAMs, Hastie and Tibshirani, 1986) re-
lax the assumption of linearity in the partial effect of predictor variables. In
addition to multiplying the predictor, they allow rather flexible specification
in terms of smooth functions fj, e.g.

y = β0 + β1x1 + f1(x2) + f2(x3, x4) + ...

The smooth functions fj are represented as regression splines, i.e. a sum of
basis functions. In order to prevent too complex functions and overfitting of
the data, the degree of smoothness is controlled by penalizing the addition of
basis functions so that cross validation (training on subsets of the data) shows
good fits. Figure 5.1 for example depicts a smooth function with the predictor
on the x-axis and its partial effect on the y-axis. In addition to main effects
the GAM is able to take non-linear interactions between multiple variables into
account (c.f. f2) by using tensor products. The graphs for these interactions
(e.g. 5.2) show the fitted values as a function of the predictors participating in
the interaction on the x- and y-axis. The color code depicts the fitted values,
where green is lowest and pink/white is highest. We can fit all parameters
of the model by factorial predictors, so that we have estimates for each factor
level - for instance having one curve for single fixations and one for non-singles.

GAMs allow for random effects, in which there is a different intercept
for every factor level of the predictor. This is useful when the set of possible
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levels for the predictor is not fixed and each of the levels is non-repeatable.
In contrast to predictors such as drug/no-drug or isSpaceSeparatedWord, the
word items and the subjects of an experiment items are best represented by
random intercepts.

GAMs provides probabilities whether an effect is present, i.e. its estimated
parameter differs from zero. Specifically, the obtained p-value is the proba-
bility of estimating this parameter given that it is actually not present in the
data. In addition to testing for significance of the predictors (p-value < 0.05),
we assess the quality of the model with the Akaike Information Criterion
(AIC). The AIC gives an estimate of the information lost when the given model
is used to represent the process that generates the data in comparison to the
(unknown) true process. Therefore, the lower its value, the better the model.
Moreover, it penalizes the usage of many predictors, which helps to prevent
overfitting.

In the beginning of the modelling process, random forests were used to
gather an overview of variable interactions and estimate variable importance.
All of the following models were implemented in the statistical computing
language R (R Development Core Team, 2011) using the mgcv package (Wood,
2006) for GAMs and the party package (Strobl et al., 2008) for random forests.
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5 Experiment

The main concern of this work is, first, find the best model given our predictors
to learn about general mechanisms in reading.

Second, we try to replicate the findings of Kuperman et al. (2009), who
showed that compound and first constituent frequency as well as family size
governs early fixation duration in reading, which makes strictly sub- or supralex-
ical models of morphological processing unlikely. In their set up the partici-
pants pursued a lexical decision task while wearing an eye tracker. In contrast
to our dataset the words were presented in isolation, thus, if we are able to
confirm their results it would increase the ecological validity.

Third, Baayen et al. (2013) showed that LSA similarity between con-
stituents and compound influences first fixation duration and first fixation
position, which dismisses staged models and argues for form-and-meaning mor-
phological processing. Their findings indicate that words already undergo a
semantic analysis in parafoveal vision, which is so controversial that more data
and potentially evidence should be gathered.

The two sources can be compiled to the following hypotheses:

(1) Both immediate constituents and the whole compound affect lexical pro-
cessing of compound words.

(2) Compound Frequency, left constituent frequency and left constituent
family size show up at the first fixation and precede right constituent
frequency and family size effect.

(3) LSA similarity predicts the durations of first fixations.

(4) LSA similarity predicts the position of first fixations.

To investigate the hypotheses, a dataset of fixations collected with an eye
tracker is used. In order to limit difficulties when trying to detect and ana-
lyze different compound types, we restrict ourselves to noun-noun compounds.
Then we try to find the best model fit using GAMs for fixation duration and
fixation position given the predictors, so that the significance and estimates of
predictors cast light on the hypotheses.
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5.1 Data Collection

The fixation duration and fixation position data were gathered in an eye track-
ing experiment conducted by Peter Hendrix. With an eye tracker from the
EyeLink1000 series with chin-rest and a sampling rate of 500 Hz the fixa-
tion durations and positions of the right eye were measured, while participants
read the entire fiction section of the Brown Corpus (Francis and Kucera, 1979),
which is in English. This section contains contains 126 text consisting of 35-50
pages each. The monitor displayed full pages, which are up to 10 lines long.
The text appeared on a monitor with 1024 x 768 resolution and was presented
in a black Courier New font with a size of 24 pixel on top of a white back-
ground. Each page was preceded by a fixation mark at the top left of the
screen, at the same location as the first letter of the first word of the text, to
correct for minor movements of the head.

There were 4 participants, graduate students at the Linguistics department
of the University of Alberta, consisting of two males, aged 26 and 31, and two
females, aged 28 and 26. Three participants were native speakers of English,
one was near-native (the 26 year old female). They received $20 per hour
for their participation and a $250 bonus for completing the entire experiment
which took around 100 hours. A game pad allowed moving to the next page
and self-calibration every 5 pages with 9 reference points. Participants read
2 texts per hour with 5 minute breaks between the texts. If they decided to
run themselves for more than one hour at a time, they took 10 minute breaks
between each session of 2 texts. They were instructed to move as little as
possible and read at a natural pace.

A post-processing step was necessary because sometimes the vertical posi-
tions of fixations were inaccurate, mostly at/near the ends of lines. Fixations
were therefore corrected by a correction algorithm, which compared the x and
y coordinates of preceding and following fixation. The algorithm put about
98% of fixations on the correct line, such that its output was inspected by
student assistants and manually corrected where necessary.

In total, the dataset consists of 920.000 fixations on 253.000 words.

5.2 Data preparation

In order to extract only fixations on noun-noun compounds from our dataset,
every word that occurred in the text was looked up in the CELEX database.
CELEX allows us to, first, map the word form to a matching lemma and
then obtain the morphological structure of the lemma. The structure enables
obtaining the individual constituents that make up the compound. If there
were multiple lemmas for a word form, every one of them was checked whether
its a noun-noun compound. Compounds which are separated by spaces needed
special treatment, such that every word bigram (two adjacent words) without
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intervening delimiters in the text was looked up in the database.
There are obvious problems with this naive approach. First, if words have

the same spelling but different morphological structures, one of which is a
noun-noun compound, then the word is marked as a noun-noun compound even
if sentence structure or context would reject the compound interpretation. For
example, foxhunt is listed in CELEX both as a noun-noun compound as well
as a noun-verb compound. Second, two adjacent words could be considered a
compound according to a CELEX, even if they do not represent a compound.
The noun-noun detection algorithm returns a false positive for the sentence
’He was parking lots of cars.’, because it finds parking lot as a word form of
a noun-noun compound. However, by manual inspection it was ensured that
those problematic cases are rare and are therefore only slightly able to bias the
quantitative analysis. This does not rule out the possibility of false negatives
at all, because we can only detect compounds that were listed in CELEX, i.e.
it appeared more than once in their corpus. This is problematic given the vast
number of possible noun-noun compounds.

In order to fit reliable models of natural data it is often necessary to remove
data points, which can be considered outliers, because they are numerically
distant from the rest of the data and thus not governed by variables we want
to investigate but by measurement errors or participants short-term inability
to stay with the experiment. It was derived from theory that fixations which
last less 70 msec are to be considered misfixations and should not be analyzed
further, because this time frame is too small to go beyond simple visual uptake.
237 measurements were taken out of the dataset due to this train of thought.
On the other side, there were 18 fixations which were erased because they
seemed way too long for normal fixations because they lasted longer than 520
msec (more than three standard deviations away from the mean) and distorted
the quantile-quantile-plot.

The subset of noun-noun resulted in 5475 fixations on 944 unique words. Of
all those fixations, there were 2002 single fixations, 1505 first of many fixations
and 1968 last of many fixations.

5.3 Predictors and Response Variables

We have some predictors that stem from the presentation, namely Line, X and
XParagraph. The text for the participant is presented in paragraphs, which
span multiple lines and may consist of multiple sentences. The numerical
variable Line denotes the line number of the current fixation. X is how far
the fixation is into the line and XParagraph shows how much the fixation is
into the line if the whole paragraph was in one line. The variable InSentence
gives the position in the current sentence in percent.

The following predictors are dependent on properties of the word. Length
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stands for the length of the compound in number of letters. CompoundFre-
quency denotes the lemma frequency of the compound in the Web1T corpus.
Const1Frequency and Const2Frequency stand for the frequency of the
first and second constituent in the subtitle corpus. Originally, all frequency
measures were intended to be from the CELEX corpus, but the subtitle corpus
has been proven as making more accurate predictions for lexical decision laten-
cies. In addition, CELEX does not list frequencies of space-separated lemmas,
due to limits of computational power at that time. The subtitle corpus also
does not have frequency list for those compounds, which is why frequency lists
of Web1T were used.

It has been shown that the family size, i.e. the number of lemmas that
share one constituent with the compound, influences fixation duration (Ku-
perman et al., 2009). Naturally, family size is highly correlated with the fre-
quency of the constituent. Therefore, two linear models were fitted where
the family size of the respective constituent was predicted given the con-
stituents frequency. The residuals of both models yielded the two predictors
Const1ResidFamSize and Const2ResidFamSize.

In order to evaluate semantic effects on early measurements, the predictors
LSACompConst1, LSACompConst2 and LSAConst1Const2 were in-
troduced, which denote the LSA similarity between compound and constituent
and the constituents with each other. The similarity effects were obtained from
http://lsa.colorado.edu using the General Reading up to 1st year college
(300 factors) space and term to term comparison. By manual inspection it was
realized that LSACompConst1 and LSACompConst2 are not reliable for com-
pounds with a separating space, which is why we always include a by=Space
part in the model’s LSA term and ignore the effects for space-separated com-
pounds. LSAConst1Const2 remains meaningful nevertheless.

The variable PreviousFixationDuration is self-explanatory, the variable
Space marks compounds that are separated by spaces and Single is used to
indicate fixations that were the only ones on that particular word. In addition,
there can be random intercepts for Subjects and Words.

Including all predictors, the collinearity index κ computed by the lan-
guageR package (Baayen, 2011) is 12.6867. This means that they are not
harmfully correlated and do not suppress each other.

The first response variable to be studied is the fixation duration. It
was log-transformed to reduce the skewness of their distribution and to reduce
the influence of atypical outliers as suggested by Baayen and Milin (2010).
The raw distribution of the variable is depicted in figure 3.1. The fixation
position is the number of pixels the participant fixated horizontally into the
word and therefore the variable is coined XWord. The related variable XWord
percentage (not included in the models) can be inspected in figure 3.2.

Table 5.1 provides the list of variables, as well as their range, mean and
standard deviation. In addition to the fixation duration the frequency mea-

http://lsa.colorado.edu
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Table 5.1: Descriptive statistics on continuous predictors and response vari-
ables.

Variable range mean sd
X 43:942 431 238
XParagraph 45:7023 2939 1793
Line 1:8 3.6 1.9
InSentence 0.02:1 0.64 0.29
CompoundFreq -3.0:2.5 0 1
Const1Freq -2.5:2.3 0 1
Const2Freq -2.4:1.7 0 1
Const1ResidFamSize -2.1:1.9 0 0.6
Const2ResidFamSize -2.0:2.6 0 0.5
LSACompConst1 -0.07:1 0.4 0.26
LSACompConst2 -0.09:1 0.3 0.28
LSAConst1Const2 -0.03:0.92 0.22 0.15
PreviousFixationDuration 20:784 177 70
FixationDuration 4.2:6.2 5.2 0.3
XWord 0.1:240 68 43.5

sures require a log-transformation, because their original distributions follow
a power law, which would make them unsuited for regression analysis. The
frequency measures, and the family size residuals were standardized, such that
their mean is zero and the standard deviation is one. All other variables denote
their original values.

5.4 Analysis

The general process for the analysis of the dataset was, first, include many
predictors and interactions of predictors. Then, sequentially dismiss predictors
if they are not significant or do not reduce AIC substantially.

5.4.1 Single Fixation Duration

We start testing our hypotheses with the analysis of the duration of single
fixations with a generalized additive mixed model (Table 5.2).

First, we can observe that the manner of presentation does matter, specif-
ically Line and X are highly significant, as depicted in the p-value column.
The higher the current line number the longer the fixation (Estimate column),
probably because the paragraph unfolds its complexity further in the text,
which elicits longer fixations. The partial effect of X can be seen on the ver-
tical axis of figure 5.1 for different values of X. Fixations in the beginning of
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Table 5.2: Generalized additive mixed model fitted to the single fixation dura-
tion, reporting parametric coefficients and estimated degrees of freedom (edf),
reference degrees of freedom (Ref.df), F and p values for the tensor products
and random effects.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept 4.9899 0.1872 26.6600 < 0.0001
Line 0.0158 0.0036 4.3931 < 0.0001
Const1ResidFamSize 0.0260 0.0121 2.1492 0.0317
B. smooth terms edf Ref.df F-value p-value
Subject 2.7580 3.0000 11.2412 < 0.0001
Word 44.4680 356.0000 0.1608 0.0063
X 5.0855 6.1684 18.0410 < 0.0001
te(CompoundFreq,LSACompConst2):Space 3.8378 4.2296 3.1268 0.0127
te(CompoundFreq,LSACompConst2):no Space 3.0000 3.0000 2.8470 0.0363

the line last longer than in the end of the line. Because neither InSentence
nor XParagraph are able to replace the X variable, we can conclude that the
longer fixations stem from the confusion when the participants change into a
new line.
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Figure 5.1: Smooth partial effect of
X on single fixation durations. The
dashed lines depict 95% confidence in-
tervals.

Further, we can see that there are highly significant random intercepts for
subject and word, which shows that fixation duration depends on individual
differences, such as experience, as well as properties of the word that are not
captured by our variables.

As we have stated earlier, it is nothing unusual that we find frequency
effects for fixation durations, especially in single fixations, because after the
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fixation the lexical processing should be done. In fact, CompoundFreq without
the interaction is highly significant (p < 0.0001) and shortens the fixation
duration. The first constituent elicits no frequency effect, but still has an
influence on fixation duration, namely a high family size lengthens the fixation
duration. This opposes the findings of e.g. Bertram et al. (2000), who found
in several experiments that family size actually shortens fixation duration.
Despite the significance of family size here, it does not reduce AIC extensively,
but only by roughly 3 units. However, the results of Bertram et al. (2000) were
obtained in lexical decision experiments, where rather different processes are at
work. For example, it would be reasonable to assume that higher family sizes
increase uncertainty about the compound which leads to longer fixations. The
predictor Const1FamSize, where the confounding influence of the frequency
variable has not been removed, does not become significant.
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Figure 5.2: Tensor product smooths for the interactions of compound fre-
quency by whole-right LSA similarity for single fixation durations of compounds
without spaces. Green areas stand for shorter fixation duration and pink areas
for longer fixations.

It seems that semantic similarity has an influence on word processing, be-
cause adding LSACompConst2 to the model reduces AIC by 1̃5 units and the
interaction with CompoundFrequency is significant. In Figure 5.2 we can see
that relatively low frequency of compound and low semantic similarity between
head and compound lead to longer fixation durations. Further, the interaction
functions like an OR gate - if one of the predictors has a high value, the other
one doesn’t matter. As stated before, the interaction for space-separated com-
pounds is not reported here because LSA similarity is not reliable for those
words. In contrast to these results, Baayen et al. (2013) found that the inter-
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action of LSAConst1Const2 by Const2Freq is significant - here we do not find
a second constituent frequency effect at all.
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5.4.2 First-of-many Fixation Duration

Table 5.3: Generalized additive mixed model fitted to the first-of-many fixation
duration.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept 5.2102 0.1011 51.5537 < 0.0001
CompoundFreq -0.0232 0.0099 -2.3441 0.0192
Const1FreqCelex -0.0223 0.0091 -2.4473 0.0145
B. smooth terms edf Ref.df F-value p-value
Subject 2.7405 3.0000 10.3629 < 0.0001
X 3.6015 4.5123 2.2912 0.0504
te(XWord,LSACompConst2):no Space 6.0218 6.8550 12.8614 < 0.0001
te(XWord,LSACompConst2):Space 4.8355 5.5046 0.9714 0.4361
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Figure 5.3: Smooth partial effect of
X on first-of-many fixation durations.
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Figure 5.4: Tensor product smooths
for the interaction of fixation position
in the word by whole-right LSA sim-
ilarity for first-of-many fixation du-
rations of non-space separated com-
pounds.

Next, we are considering first-of-many fixation durations (Table 5.3). As
before, Subject is a random effect and X has a highly significant effect. The
partial effect of X shows (Figure 5.3) that fixations at the beginning of a line
are especially short, which probably indicates that after jumping from the pre-
ceding line, there are many short fixations necessary to focus on the current
line. Also, it sticks out that individual Words do not have significant random
intercepts as it was in the single fixation case. Also, Line is not significant.
Because the first-of-many fixation is an early measurement (otherwise no re-
fixation would be necessary) and the first constituent is projected to the fovea,
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we expected its frequency to be significant (Hyönä et al., 2004). Only the fre-
quency measurement from CELEX is significant, SUBTLEX frequencies fail
to achieve a significant effect (p ≈ 0.12). However, that the compound fre-
quency reaches significance means that the full compound is recognized even
though a refixation is necessary. This goes well with the findings of Kuperman
et al. (2009), who claimed that this early full-form access poses a problem for
sublexical models. The importance of the compound frequency for predicting
first-of-many durations was supported by fitting a random forest to the data,
which showed that CompoundFreq was the third most important predictor.
Both frequency measures facilitate lexical processing.

Further, the interaction of XWord with LSACompConst2 is significant for
compounds without separating spaces. XWord alone is significant, but the
interaction with LSACompConst2 reduces AIC by 48 units. Figure 5.4 shows
that the farer the first-of-many fixation is into the word, the shorter its du-
ration. Because there are multiple fixations necessary to process the word,
this does not mean that lexical processing is facilitated by a further jump.
Semantic similarity influences this effect for higher XWord by shortening the
fixation duration. Baayen et al. (2013) found a main effect of LSACompConst2
(higher values lead to shorter fixations), whereas in this experiment semantic
similarity only occurs in an interaction.
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5.4.3 First Fixation Duration

We get all first fixations by taking both the single and first-of-many fixations
into account in order to find a model that captures their similarities (Table
5.4).

Table 5.4: Generalized additive mixed model fitted to the first fixation dura-
tion.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept 4.9866 0.0701 71.1465 < 0.0001
Line 0.0106 0.0027 3.8520 0.0001
PreviousFixationDuration 0.0348 0.0126 2.7633 0.0058
Single 0.0882 0.0111 7.9836 < 0.0001
Const1ResidFamSize: Single 0.0021 0.0128 0.1652 0.8688
Const1ResidFamSize: no Single 0.0288 0.0116 2.4856 0.0130
Const1Freq: Single -0.0157 0.0089 -1.7559 0.0792
Const1Freq: no Single -0.0034 0.0079 -0.4318 0.6659
B. smooth terms edf Ref.df F-value p-value
Subject 2.8771 3.0000 31.5248 < 0.0001
Word 50.0336 398.0000 0.1586 0.0043
X: no Single 8.3836 8.8806 17.2234 < 0.0001
X: Single 7.0571 8.1089 15.6929 < 0.0001
te(CompoundFreq,LSACompConst2):no Space 3.6384 3.9564 4.1148 0.0027
te(CompoundFreq,LSACompConst2): Space 3.4904 3.7935 0.6317 0.6314

First, we note that Subject and Word have random intercepts, Line occurs
as a main effect and X as a smooth term. The graphs for X are not surprisingly
similar to the graphs we have seen in the individual analysis of single first-of-
many fixations. Because we now have more data points at hand, we find more
subtle effects like the previous fixation duration, which spreads to the current
fixation. Moreover, we see that Single is a main effect, such that single fixations
last longer than first-of-many fixations. For single fixations a high family size
of the first constituent again seems to make comprehension more difficult.

This model seems to only slightly suggest that the first constituent fre-
quency could play a role and if so, then only for first-of-many fixations. How-
ever, if we cut out the interaction CompoundFreq by LSACompConst2 and
compare CompoundFreq alone (highly significant) with CompoundFreq in in-
teraction with Const1Freq, the latter reduces the AIC by ≈ 60 units. In the
current model the interaction between CompoundFreq and LSACompConst2
is shown, which reduces the AIC also by ≈ 60 units compared to Compound-
Freq alone. The significant part of the interaction captures both single and
first-of-many fixations and we see in figure 5.5 that the semantic similarity
effect is weaker than in the single fixation only model and only mid-to-lower
similarity eases reading.

In summary, the model shows that single and first-of-many fixation dura-
tions differ substantially in most measurements, the only predictor both fixa-
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Figure 5.5: Tensor product smooths for the
interaction of compound frequency by whole-
right LSA similarity for single and first-of-
many fixation durations of non-space sepa-
rated compounds.

tion types have in common is the interaction of CompoundFreq by LSACom-
pConst2.
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5.4.4 Probability of Refixation

The next model tries to predict whether an additional fixation on the com-
pound is necessary, predicting the probability of a first-of-many fixation against
a single fixation of all first fixations (Table 5.5).

Table 5.5: Generalized additive mixed model fitted to the probability of a
refixation.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept 1.4531 0.9293 1.5636 0.1179
CompoundFreq -0.3363 0.0574 -5.8572 < 0.0001
B. smooth terms edf Ref.df F-value p-value
Subject 2.5740 3.0000 22.2960 < 0.0001
Word 70.0010 400.0000 97.3006 < 0.0001
X 4.2698 5.2380 22.1164 0.0007
InSentence 2.8453 3.4720 10.0504 0.0275
XWord 5.1162 6.2261 169.0033 < 0.0001
te(Length,LSACompConst2):no Space 3.0001 3.0002 29.5085 < 0.0001
te(Length,LSACompConst2):Space 3.4568 3.7833 21.8129 0.0002

We first recognize that Subject and Word have random intercepts like in
the preceding models. Further, CompoundFreq appears as a linear main effect
for which high values make it less likely to result in refixations.
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Figure 5.6: Smooth partial effect of
X on probability of refixation.
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Figure 5.6 shows that readers most likely refixate at the beginning of a line,
which goes well with our previous findings about X. We can see in figure 5.7
that readers refixate less often in the middle of a sentence. If we stick to the
hypothesis that refixations occur on complicated words or sentence structure,
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we can conclude that most of the magic happens at the beginning or at the
end of a sentence. Figure 5.8 suggests that there is a sweet spot for single
fixations at the middle of a word - if it is fixated at the beginning or at the
end it will rather result in a refixation. This spot reflects the optimal viewing
location which has often been found in eye tracking studies.

Unsurprisingly, longer compounds are more likely to receive multiple fixa-
tions (Figure 5.9), but Length is further in interaction with LSACompConst2,
which reduces AIC by 100 units. For longer compounds a higher similarity
between head and compound leads to a higher probability of a refixation. It is
necessary to note, that if we would truly want to explain the moment just be-
fore a refixation is made or not, we would have to include the fixation duration
as a predictor. Including this predictor, however, would eliminate the effect of
LSA similarity, i.e. the influence of LSACompConst2 seems to be explained by
FixationDuration. Instead of an effect of LSACompConst2 Baayen et al. (2013)
found a three-way interaction of XWord, Const2Freq and LSAConst1Const2.
The interaction would also become significant in this model, but it only re-
duces AIC by 15 units here, which is considered too low for such a complicated
term.
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Figure 5.8: Smooth partial effect of
XWord on probability of refixation.
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5.4.5 First Fixation Position

To investigate the parafoveal processing in reading, we continue with investi-
gating the influences on the first fixation positions in the compounds (Table
5.6).

Table 5.6: Generalized additive mixed model fitted to the first fixation position.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept 53.9836 14.0791 3.8343 0.0001
B. smooth terms edf Ref.df F-value p-value
Subject 2.9460 3.0000 54.7067 < 0.0001
Word 80.8632 396.0000 0.2935 < 0.0001
X 8.6936 8.9632 26.0037 < 0.0001
PreviousFixationDuration 3.4603 4.3415 7.5270 < 0.0001
te(Length,LSACompConst2):no Space 3.4206 3.6507 7.8358 < 0.0001
te(Length,LSACompConst2):Space 6.0681 7.1253 1.7551 0.0905
te(Const1ResidFamSize,LSAConst1Const2) 4.5568 5.0181 3.0333 0.0097

It is evident that there are again random intercepts for subject and word, as
well as effects of X and PreviousFixationDuration. In figure 5.10 we see that at
the beginning and end of a line the participants fixated especially far into the
compound. The first peak corresponds to the short fixations at the beginning
of a line, because participants have to figure out first how to begin reading
the line. Figure 5.11 shows that the higher the previous fixation duration the
more cautious the reader and thus he does not fixate far into the word.

Similar to Baayen et al. (2013) we see an interaction between Length and
LSACompConst2 in figure 5.12. But in the Baayen et al. (2013) the effect of
LSACompConst2 is that a higher similarity leads to earlier fixations, whereas
here LSACompConst2 leads to farer fixations for longer compounds. Also,
their effect of length appears to go directly into the opposite direction, be-
cause they reported that shorter compounds have their fixations more at the
beginning of the word. The reason for this becomes visible when we use the
percentage position in the word instead of XWord as a predictor. Then, the
surface of the interaction shows that longer compounds are relatively more
fixated in the left while the effect of LSACompConst2 stays basically the same
(Figure 5.14). But the absolute fixation position of longer compounds is more
to the right. Despite inclusion of LSACompConst2 reduces AIC by extraordi-
nary 800 units, it is not a main effect as opposed to Baayen et al. (2013).

Moreover, they found an interaction of Const2Freq by LSAConst1Const2,
which does not get significant in this model. LSAConst1Const2 was rather
found in interaction with Const1ResidFamSize.

Interestingly, Const1ResidFamSize and LSAConst1Const2 are only signifi-
cant if they occur in an interaction with each other, which reduces AIC by 80
units. If LSACompConst2 is not included in the model, the interaction does
not become significant (p ≈ 0.07). In Figure 5.13 we see that their interaction
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functions similar to an AND gate - only if both have high values the fixation
is more at the beginning of the word. Additionally, a random forest was fitted
to the first fixation position and it showed LSAConst1Const2 as the fifth most
important of all 16 predictors.
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Figure 5.10: Smooth partial effect
of X on first fixation position.
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Figure 5.12: Tensor product
smooths for the interaction of length
by whole-right LSA similarity for first
fixation positions of non-space sepa-
rated compounds.
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Figure 5.13: Tensor product
smooths for the interaction of first
constituent family size by left-right
LSA similarity for first fixation posi-
tions.
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6 General Discussion

In general, reading is strongly governed by individual subject and words differ-
ences as indicated by random intercepts which almost always became highly
significant. When reading over multiple lines, the position in the line has sub-
stantial effects on the duration of the fixation and whether a refixation has to
be made. In fact, the horizontal position has come out as the second most
important predictor for both first fixation duration and first fixation position
in random forests. This is probably because moving from one line to the other
and the inherent visual search for a starting point is a dominant factor in the
data. It might potentially be harmful to present texts in multiple lines when
very subtle effects are to be explored. The most important clue for duration
and position is provided by information whether a fixation is single or first-of-
many. Single fixations last longer, are on shorter words, more in the center of
the word and are influenced differently by frequency measures.

The compound frequency effect was present in first fixations, the first con-
stituent frequency additionally in first-of-many fixations. Thus, despite that
we can not safely state that the first constituent occurs in the model of single
fixations, we can not falsify hypothesis (1) completely: at least the first con-
stituent and the whole compound affect lexical processing of compound words.
We were not able to find an effect of second constituent frequency neither by
analyzing single nor last of many duration.

Further, since we observed the time-course of frequency effects and this
reflects activation of the mental representations, we can say something about
morphological processing. If morphological processing was purely sublexical
one would expect first activation of left constituent, then right constituent
and then whole compound. On the other hand, if it was purely supralexical
we would have to see activation of the compound, then left constituent and
then right constituent. Thus, if hypothesis (2) - compound, first constituent
frequency and family size precede right constituent frequency and family size
- is true, then the strict models are implausible. We are able to confirm this
in part, because for first-of-many fixations we witnessed that both frequency
of the first constituent and compound frequency show up. Since there is a
refixation to be made this reflects early processing and speaks against strict
sub- or supralexical processing. Kuperman et al. (2009) reported similar results
but their experiment consisted of isolated words instead of words in sentence
context, which is important considering possible spillover effects like we saw
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with previous fixation duration. Therefore, it would be reasonable to follow
their argument for a parallel dual route or multiple interactive route model.

A model in which a compounds meaning is both retrieved by full-form ac-
cess and computation from the constituent receives additional evidence due to
the role of transparency in fixation durations. Semantic transparency opera-
tionalized by LSA similarity between compound and second constituent has a
reasonable effect in single fixations. If the compound frequency is high, trans-
parency plays no role because direct lexical access is the fastest pathway. If
compound frequency is low, some computation is necessary and its speed is
enhanced by transparency. On the other hand, the compound frequency has
almost no effect in highly transparent compounds. In earlier measurements,
namely in first-of-many fixations, transparency has a facilitating effect only
when the fixation was far into the word. This indicates that properties of the
second constituent can be identified early. Additionally, longer compounds are
are more likely to require a refixation if they are transparent. These results
strengthen hypothesis (3), LSA similarity helps predicting the first fixation
duration, but from the duration models it does not look like it plays a major
role at early stages.

That LSA similarity plays a role at surprisingly early stages is shown in the
model for first fixation position and strengthens hypothesis (4). Even though
the compound has not yet been in foveal inspection, semantic processes are
in full swing, which is consistent with the results showing that processing of
upcoming words happens during reading of the current word (Kliegl et al.,
2007) and resembles the findings of Baayen et al. (2013). In contrast to their
results, a high right-whole LSA similarity leads to fixations more to the right.
One advantage we have over their methodology is that we observed fixations
at 944 uniquely embedded compounds, whereas they only presented 111 com-
pounds. Baayen et al. (2013) additionally reported that higher left-right LSA
similarities result in fixations more to the right, which is not the case in our
results. Since higher left-right LSA similarities indicate greater textual inter-
changeability, it would be reasonable to choose a conservative fixation more in
the beginning of the word. The influence of semantic factors speaks strongly
for the form-and-meaning account of word processing and enables us to narrow
down the time needed for semantic processing. According to Reichle and Rein-
gold (2013) parafoveal processing takes place during saccade programming, i.e.
during 80−120 msec before the beginning of a saccade. This allows for a max-
imum of 120 msec for initial semantic work, which is way below the 300 msec
lower boundary of semantic processing reported in neuroimaging studies.

The reason why we are able to find early effects of semantics is probably due
to the usage of eye tracking instead of the eye-contingent boundary paradigm
used in Rayner et al. (1986). Additionally, LSA measurements have been
found to resemble more closely human performance then human transparency
ratings. Instead of isolated words, reading was performed in sentential context
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which provides a variety of additional cues. Finally, the usage of a regression
design and especially GAMs allow for detection of subtle non-linear effects.

Baayen et al. (2011) and Baayen et al. (2013) propose the naive discrimina-
tive reader to account for the wide range of morphological effects such as the
form-and-meaning results. It is a model in which orthographic letter represen-
tations are directly mapped onto semantic representation (lexemes), without
specific representations for morphemes or whole words. Rather, it is a bottom-
up approach that uses the Rescorla-Wagner equations to define the association
strength of a letter trigram to a semantic outcome. To judge the performance
of the model, it was used to compute activation levels of the outcomes given the
orthography of a word. Then, the activations of compound, modifier and head
were utilized as predictors in the GAM models and provided a much tighter
fit than the standard predictors we discussed here. This poses a problem for
multi-stage models that assume many theoretical constructs such as the dual
route model.

It is presumed that the activation spreads to related lexemes from which
additional predictions are generated. If the bottom-up process fails, i.e. a criti-
cal orthographic cue is missed, top-down processes motivated by the activation
of related lexemes are initiated. As such, form and meaning processing appear
hand in hand. The lexeme representations are also triggered by events that
happen in the world, so it is assumed that the activation spread to semanti-
cally related lexemes is mediated by real world cues. Since there is no data for
experiential cues, semantic relatedness can only be measured with LSA, which
therefore still appears in the GAM models. For the initial fixation position, if
the activation levels were included, LSACompConst2 had the same effect as
we saw in our experiments: higher LSA similarity leads to further fixations. In
terms of uncertainty reduction this makes sense because it allows input from
the right of the word to give contrastive evidence and resolve the confusion of
head and compound.

The naive discriminatory reader has the advantage that it is a explicitly
articulated computational model, as opposed to the often verbal models. It is
a form-and-meaning approach, that explains the observed effects of compound
processing with uncertainty reduction. Therefore, even without computing
activation levels and testing the performance in GAMs it can be safely stated
that it is a promising candidate model for language processing.
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